MOSH/MOAH Analysis Online LC/GC System with Chronect®-LC/GC

Rolf Eichelberg, SIM GmbH Marco Nestola, Axel Semrau GmbH

in cooperation with Axel Semrau GmbH

Im Erlengrund 21-23 • D-46149 Oberhausen Tel. +49(0)208-941078-0 • Fax +49(0)208-941078-88 www.sim-gmbh.de

MOSH/MOAH Press Releases

Foto: dapd

November 2012: mineral oil in chocolates of advent calenders, Stiftung Warentest (German Foundation)

Foto: Aleksandra Polski (pixabay.com)

May 2015: Stiftung Warentest warns of mineral oil in cosmetics, especially in lipsticks

March 2016:
foodwatch published test
about mineral oil in chocolate
of Easter Bunnies

Foto: Efes Kitab (pixabay.com)

MOSH and MOAH: What are they?

Mineral Oils in Environment

75 – 85 % MOSH (saturated) (Mineral Oil Saturated Hydrocarbons) 15 – 25 % MOAH (aromatic)
(Mineral Oil Aromatic Hydrocarbons)

open chained, mostly branched

normal octane

2-methyl-heptane

2.2.3-trimethyl-pentane (iso-octane)

- naphthenic (cyclic)

di-naphthenes

tri-naphthenes

- different <u>aromatic</u> HC, mainly with <u>1 - 4 ring systems</u>

di-aromatics

tri-aromatics

Entry Pathways into Food

- mineral oils are widely found in the environment
- components can migrate into foods via various ways

Raw Materials

- combustion processes
- pesticides
- hydraulic oils from harvesting machines
- treatment of crops,
 e.g., with
 anti-foam agents,
 dust-binders, or gloss
 praying (rice)

Production

- oiling machine parts
- grease for maintenance and cleaning

Transport / Storage

- impregnated jute and sisal sacks
- mineral oil-based printing inks for cardboards boxes
- recycled cardboard boxes
- secondary packaging used during transport

Aspects of Law

currently,
 no validated analytical reference method (national/international)
 no existing <u>limit values</u> in the EU

- ISO is developing a standard method for determination of mineral oil in edible oil using online LC-GC
 - → <u>draft proposal</u> of the German Federal Government (24 July 2014):

```
limit MOSH \rightarrow 2 mg/kg foodstuff MOAH \rightarrow 0.5 mg/kg foodstuff
```


MOSH/MOAH Analyzer

Agilent 1260 Infinity LC with Degasser, bin. Pump, VWD

Agilent 7890B GC with 2x FID

➤ AS Chronect® LC-GC

CTC PAL with CHRONOS software

OpenLAB CDS ChemStation

Why HPLC-GC for MOSH-MOAH?

GC separation between MOSH / MOAH on nonpolar GC columns not possible

Online-LC-GC-FID Method

- challenging task due to the complex nature of foodstuffs and the unknown mixture of hydrocarbons
- single component analysis is not possible because of the high variety of substances
- originally developed by K. Grob & M. Biedermann (Cantonal Laboratory of Zurich) with separate analysis of MOAH:
- 1. 1st injection MOSH cleanup → GC-FID
- 2. 2nd injection MOAH cleanup → GC-FID
- optimization by Axel Semrau^{®:} determination of the MOSH and MOAH fractions within one single analysis

Sample Preparation: Internal Standard

- Extraction with hexane / ethanol and addition of internal standard for <u>fractionation and quantification</u>
 - Cholestane → End of MOSH
 - TBB → Beginning of MOAH
 - Perylene → End of MOAH
 - C₁₁ (most highly volatile compound of MOSH)
 - Pentylbenzene (most highly volatile compound of MOAH)
 - → to monitor the non-discriminatory transfer of the MOH fractions into the GC

1. Phase: HPLC

- Agilent 1260 Infinity LC for high separation efficiency and reproducibility
- fractionation of MOSH and MOAH; separation of interfering matrix compounds (e. g., lipids)
- high sensitivity as the entire fractions
 (each 450 μl) are transferred into the GC
- contaminations due to the use of column chromatography, evaporation steps, etc. (as with the manual method) are impossible

LC Gradient

- column: 2-mm normal phase silica column
- separation of MOSH and MOAH with hexane/CH₂Cl₂ gradient
- UV detection (230 nm)
- gradient tracking

Interface - CHRONECT®LC-GC

- transfer of the MOSH and MOAH fractions (450 μl each) into the GC
- On-column transfer with partially concurrent solvent evaporation
- 1 or 2 channel operation (MOSH and/or MOAH)
- complete integration into CHRONOS (PAL-Software)
- user-friendly input mask for transfer parameters

2. Phase: GC

- > Agient 7890B GC with 2 FIDs
- FID (but not MS!): approx. <u>same response</u> for all hydrocarbons → quantitation possible
- GC-FID on nonpolar columns also enables characterization of the sample related to its molar mass distribution
- Two independent on-column channels with "retention gaps" for <u>simultaneous</u> determination of MOSH and MOAH

MOSH und MOAH in Parallel

- normally, two injections of a sample needed
- with CHRONECT®LC-GC: MOSH + MOAH in the same GC run (green: MOSH, black: MOAH)
- adjusted temperature, special transfer valve, separate gas regulations, two columns, SVEs, FIDs
- no loss of highly volatile components
- doublication of sample throughput

1

Mineral Oil Transfer from Packaging to Food

Foto: Marie Beaucaire (pixabay.com)

- input through printing ink and recycled cardboard boxes (unless mineral oil free ink is used)
- high risk for food with high surface (e.g. rice, semolina, cereals)

- migration of printing ink from cardboard
- cardboard → inner packaging (PE, PP)
 via gaseous phase
- (delayed) migration from inner packaging
- inner packaging → foodstuff via gaseous phase

Migration Example: Rice Packaged in Cardboard

Contamination in Production Process: Nut Nougat Cream

uncontaminated sample:

contaminated sample:

MOSH Fraction: Interfering Compounds

MOAH Fraction: Interfering Compounds

Sunflower oil

Interference:

olefins (squalene and isomers, sterenes, etc.)

- polar modification using epoxidation
- separation by LC possible
- reliable identification
- various kinds of sample preparation depending on food matrix: highest sensitivity by elimiation of interfering compounds

MOSH/MOAH Analyzer: Features

optimization of the original method by K. Grob: simultaneous determination of MOSH and MOAH within one chromatographic run (30 min)

direct LC-GC coupling prevents from contamination

- high degree of automation for excellent reproducibility
- optimum sensitivity due to lossless transfer into GC

- installed base: 30 units
- MOSH/MOAH Analyzer is preassembled, configured with columns, and analytical method, tested and delivered

ready-to-analyze

Contact:

SIM GmbH, contact person: Rolf Eichelberg info@sim-gmbh.de

