Bei Interesse an verschiedenen Applikationen senden Sie bitte eine E-mail an **sim@sim-gmbh.de** mit der/den entsprechenden Artikelnummer/n, sodass wir Ihnen die gewünschten Unterlagen zusenden können.

Pyrolyse-GC, GC/MS Notes

No.	Article name
PYA1-001E	Analysis of Residual Oligomers in Polystyrene (PS); Part 1: Thermal Extraction in Evolved Gas Analysis (EGA)
PYA1-002E	Analysis of Residual Oligomers in Polystyrene (PS); Part 2: Thermal Extraction Conditions and Quantitative Analysis
PYA1-003E	Analysis of Acrylonitrile Butadiene Rubber (NBR) by Double-Shot Technique
PYA1-004E	Analysis of Antioxidants in Acrylonitrile Butadiene Rubber (NBR); Part 1: Study of Thermal Extraction by Evolved Gas Analysis (EGA)
PYA1-005E	Analysis of Antioxidants in Acrylonitrile Butadiene Rubber (NBR); Part 2: Reproducibility in Quantitative Analysis
PYA1-006E	Analysis of Offensive Odor Components in Polypropylene (PP) Pellets
PYA1-007E	Analysis of Alkylketene Dimers (AKD) in Paper
PYA1-008E	Analysis of Stereoregularity of Polymethyl Methacrylate (PMMA)
PYA1-009E	Composition Analysis of a Multi Component Acrylate Copolymer
PYA1-010E	Analysis of Ceramic Composite Materials with Double-Shot Pyrolyzer and Peripheral Devices; Part 1: Evoloved Gas Analysis (EGA) and Library Search using EGA-MS Polymer Library

PYA1-011E	Analysis of Ceramic Composite Materials with Double-Shot Pyrolyzer and Peripheral Devices; Part 2: Data Analysis by EGA-MS with Mass Chromatogram Method
PYA1-012E	Analysis of Ceramic Composite Materials with Double-Shot Pyrolyzer and Peripheral Devices; Part 3: Analysis by Heart cutting EGA-GC/MS Technique
PYA1-013E	Composition Analysis of Adhesives Using Double-Shot Pyrolyzer and Peripheral Devices; Part 1: EGA and Library Search with EGA- MS LIB
PYA1-014E	Composition Analysis of Adhesives Using Double-Shot Pyrolyzer and Peripheral Devices; Part 2: Analysis by EGA-GC/MS Technique
PYA1-015E	Analysis of Compounded Rubber by Double-Shot Technique
PYA1-016E	Analysis of Thermoset Resin Using Double-Shot Pyrolyzer and Peripheral Devices; Part 1: Evolved Gas Analysis (EGA) and Library Search with EGA-MS LIB
PYA1-017E	Analysis of Thermoset Resin Using Double-Shot Pyrolyzer and Peripheral Devices; Part 2: Analysis by EGA-GC/MS Technique
PYA1-018E	Analysis of Printer Toner Using Double-Shot Pyrolyzer and Peripheral Devices; Part 1: Evolved Gas Analysis (EGA) and Library Search by EGA-MS LIB
PYA1-019E	Analysis of Printer Toner Using Double-Shot Pyrolyzer and Peripheral Devices; Part 2: Analysis by Heart Cut EGA-GC/MS Technique
PYA1-020E	Characterization of Polysiloxanes by Py-GC/MS
PYA1-021E	Quantitative Analysis of Trace Amount of Butadiene Rubber in High Impact Polystyrene (HIPS)
PYA1-022E	Analysis of Food Wrap Film Using Double-Shot Pyrolyzer; Part 1: Analysis with Evolved Gas Analysis (EGA)
PYA1-023E	Analysis of Food Wrap Film Using Double-Shot Pyrolyzer; Part 2: Analysis of Polyvinylidene chrolide (PVDC) by EGA Heart-Cut GC/MS Technique
PYA1-024E	Analysis of Food Wrap Film Using Double-Shot Pyrolyzer; Part 3: Analysis of Polypropylene (PP) + Nylon by EGA GC/MS Technique
PYA1-025E	Analysis of Food Wrap Film Using Double-Shot Pyrolyzer; Part 4: Analysis of Evolved Gases Components at 100°C
PYA1-026E	Analysis of Additives in Polybutylene Terephthalate (PBT)

PYA1-030E	Py-GC/MS Analysis of Crude Drug Propolis From Different Areas
PYA1-031E	Heart-cut EGA/MS Analysis of Crude Drug "Propolis" Produced in Different Areas
PYA1-032E	Analysis of Volatile Components of Crude Drug "Propolis" by Heart-cut EGA-GC/MS
PYA1-034E	Studies of Curing Process of Epoxy Resins by Py-GC - Cured with 1-Benzyl-2-Methyl Imidazole (1B2Mz) -
PYA1-035E	Studies of Curing Process of Epoxy Resins by Py-GC - Cured with Hexahydrophthalic Acid Anhydride (HHPA) -
PYA1-036E	Characterization of Polymerizatino Reagents Incorporated into Poly(mehyl methacrylate) Chains by Py-GC
PYA1-037E	Structual Characterization of Hydrogenerated Acrylonitrile-Butadiene Rubbers by Py-GC
PYA1-038E	Studies on End Groups in Radically Polymerized Poly(methyl methacrylate) (PMMA) by Py-GC
PYA1-039E	Determination of short-chain branches in PVC by pyrolysis-hydrogenation-GC (Py-HGC)
PYA1-040E	Ring Structure of Cyclic Poly(2-vinylpyridine) Proved by Py-GC/MS
PYA1-041E	Characterization of within-tree variation of lignin components in Eucalyptus camaldulensis by Py-GC
PYA1-042E	Discriminative analysis of Eucalyptus camaldulensis grown from seeds of various origins based on lignin components measured by Pv-GC
PYA1-043E	Novel N-selective ester functionalized chitin derivatives estimated by Py-GC
PYA1-044E	Tacticity of methacrylic copolymers studied by Py-GC
PYA1-045E	A novel approach to the characterization of end groups in styrene-methyl methacrylate copolymers by Py-GC
PYA1-046E	Photodegradative changes in chemical structures of silk studied by Py-GC with sulfur chemiluminescene detection

PYA1-047E	Compositional Analys	is of Isoprene-butadiene	-styrene Blend Rubber	by Py-GC

- PYA1-048E Effects of Separation Conditions to Analysis Accuracy in Composition Analysis of A Blend Rubber by Py-GC Technique
- PYA1-049E Simple Quantitative Analysis of A Cationic Polymer with A Quaternary Ammonium Salt by Py-GC/MS Technique
- PYA1-050E Quantitative Analysis of A Cationic Polymer Having A Quaternary Ammonium Salt on A Polymer Sheet by Py-GC/MS
- PYA1-051E Quantitative analysis of brominated flame retardant by thermal desorption-GC technique
- PYA1-052E Analysis of brominated flame retardant in a waste plastic by thermal desorption-GC technique
- PYA1-053E Stereoregularity of Poly(methyl methacrylate)s Studied by Pyrolysis-Gas Chromatography/Mass Spectroscopy
- PYA1-054E Qualitative Analysis of Additives in a Recycled Polypropylene Using a New MS Library for Additives (ADD-MS06 Library)
- PYA1-055E Analysis of butylhydroxytoluene (BHT) in polyethylene (PE) by Thermal Desorption Gas Chromatography (TD-GC)
- PYA1-056E Notes on the analysis of volatile additives in polymers by Thermal Desorption Gas Chromatography (TD-GC)
- PYA1-057E Identification of an Unknown Antidegradant in a Rubber Sample using the Expanded Additive MS Library
- PYA1-058E Identification of Unknown Polymeric Materials using a Polymer MS Library
- PYA1-062E Pyrolysis GC/MS of Tobacco in air and helium
- PYA1-063E Analysis of phthalates in PVC by thermal desorption GC/MS; Part 1: Determination of thermal desorption temperature zone by EGA
- PYA1-064E Analysis of phthalates in PVC by thermal desorption GC/MS; Part 2: Effect of sample form on reproducibility
- PYA1-066E Identification of the additives in polystyrene using the F-Search additive library

PYA1-067E	Using a MS library to differentiate black ballpoint pen inks by Py-GC/MS
PYA1-068E	Determination of phthalates in PVC by thermal desorption-GC/MS; Part 1: Determination of the thermal desorption temperature zone by EGA
PYA1-069E	Determination of phthalates in PVC by thermal desorption-GC/MS; Part 2: Calibration using absolute calibration method and standard addition
PYA1-070E	Analysis of surface active agents in mineral oil by Heart-cut EGA-GC/MS
PYA1-071E	Simple quantitative analysis of a brominated flame retardant in polystyrene by thermal desorption GC/MS - study using an AIST RoHS certified standard -
PYA1-072E	Simple quantitative analysis of a brominated flame retardant in polyester film pressure sensitive electrical insulating tape by thermal desorption GC/MS
PYA1-073E	Thermal desorption GC/MS of brominated flame retardant - Optimization study of PY/GC interface and GC injector temperatures for EGA/PY-3030D -
PYA1-074E	Differentiation of DOTP and DNOP in analysis of restricted phthalate esters using thermal desorption GC/MS
PYA1-077E	Rapid differentiation of beeswaxes using EGA-MS and Py-GC/MS
PYA1-079E	Characterization of 35 organic pigments using multi-functional pyrolysis-GC/MS and developing a database
PYA1-082E	Quantitative analysis of phthalate Bis(2 - Ethylhexyl) Phthalate (DEHP) in heat resistant PVC sheath using ASTM D7823-14 (thermal desorption-GC/MS)
PYA1-080E	Determination of antioxidants (Irganox 1076 and Irganox 1010) in polyethylene using thermal desorption and reactive pyrolysis - Part 1
PYA1-081E	Determination of antioxidants (Irganox 1076 and Irganox 1010) in polyethylene using thermal desorption and reactive pyrolysis - Part 2
PYA1-083E	Comparing glass and deactivated stainless steel sample cups - Part 1 Thermal desorption analysis of decabromodiphenylether (DeBDE)
PYA1-084E	Comparing glass and deactivated stainless steel sample cups - Part 2 Analysis of fatty acids in Salmonella by reactive Py-GC/MS
PYA1-085E	Evaluation of the aged deterioation of PE pipes used for a hot-water heating system (2)

PYA1-086E	Determination of antioxidant Irganox 1098 in ethylene-vinyl alcohol copolymer using Py-GC/MS
PYA1-087E	Identification of an unknown vulcanization accelerator in vulcanized rubber using F-search and the Additive MS library
PYA1-088E	Analysis of defective POM machine parts
PYA1-089E	Sampling of micro-samples using Micro Sample Collector (1) - Qualitative analysis of unknown powders on a table cloth -
PYA1-090E	Sampling of micro-samples using Micro Sample Collector (2) - Qualitative analysis of unknown powders on a table cloth -
PYA1-093E	Cure failure analysis of a two-component expoxy resin
PYA1-094E	Analysis of phthalates with IEC standard method using non-deactivated stainless steel sample cups

Reaktive Pyrolyse Notes

No.	Article name
PYA2-001E	Analysis of Terminal Group of Polycarbonate (PC) by Reactive Pyrolysis
PYA2-002E	Analysis of Diethylene Glycol (DEG) in Polyethylene Terephthalate (PET)
PYA2-003E	Simple Determination of Cellulose by Reactive Pyrolysis in Presence of Cobalt Sulfate
PYA2-004E	Composition Analysis of Fully Aromatized Polyester by Py-GC Utilizing Reactive Pyrolysis
PYA2-005E	Analysis of Polybutylene Terephthalate (PBT) by Reactive Pyrolysis
PYA2-006E	Analysis of Polyethylene Terephthalate (PET) by Reactive Pyrolysis

PYA2-007E	Analysis of Polypyromellitimide (PI) by Reactive Pyrolysis
PYA2-008E	Characterization of Natural Resin Shellac by Reactive Py-GC in the Presence of Organic Alkali
PYA2-009E	Compositional analysis of polyunsaturated fatty acid oil by one-step thermally assisted hydrolysis / methylation in the presence of trimethylsulfonium hydroxide (TMSH)
PYA2-010E	Effect of Coexisting Inorganic Impurities on Reactive Py-GC in the Presence of Organic Alkali
PYA2-011E	Precise Compositional Analysis of Industrially-Used Natural Wax by Reactive Py-GC in the Presence of TMAH
PYA2-012E	Discriminative Analysis of Natural Waxes by Reactive Py-GC followed by Multivariate Analysis Method
PYA2-013E	Analysis of Sequence Distribution of Polyacetal Copolymers by Reactive Py-GC in the Presence of Cobalt Sulfate
PYA2-014E	Unequivocal Identification of Pyrolysis Products by Retention Index Data
PYA2-015E	Determination of Average Molecular Weight of Polycarbonate by Reactive Py-GC in the Presence of Organic Alkali
PYA2-016E	Characterization of the Network Structures in UV-Cured Acrylic Ester Resin by Reactive Py-GC
PYA2-017E	Direct Determination of a Polymeric Hindered Amine Light Stabilizer in Polypropylene by Reactive Thermal Desorption-GC
PYA2-018E	Highly Sensitive Determination of Lipids in Zooplankton by Reactive Py-GC in the presence of Trimethylsulfonium Hydroxide
PYA2-019E	Determination of the Cross-linking Agent in Cross-linked Polycarbonate by Reactive Pyrolysis GC/MS
PYA2-020E	Determination of Residual Bisphenol A in Polycarbonate by Thermal Desorption (TD)-GC/MS with TMS-Derivatization
PYA2-022E	Characterization of the fatty acid profile in algae using reactive pyrolysis
PYA2-023E	Notes on Reactive Pyrolysis of Fatty Acids Using Trimethylsulfonyl Hydroxide

PYA2-024E	Effect of elapsed time after the addition of tetramethylammonium hydroxide in reactive pyrolysis
PYA2-025E	Sample preparation with TMAH using Eco-cup (Sandwich method) in reactive pyrolysis
PYA2-026E	Quantitative reactive pyrolysis of liquid crystal polyesters using the "sandwich" prep method
PYA2-027E	Determination of trace organophosphonate surfactant in aqueous media using Reactive Pyrolysis-GC/MS
PYA2-029E	Development of an On-line micro Reaction Sampler
PYA2-030E	Analysis of fatty acids in a cooking oil using an On-line micro Reaction Sampler
PYA2-031E	Determination of fatty acids in SBR rubber using reactive pyrolysis GC/MS
PYA2-032E	Analysis of nylon-6,6 by reactive pyrolysis at high temperatures and high pressures using Online micro Reaction Sampler

Evolved Gas Analysis Notes

No.	Article name	
PYA3-002E	Analysis of Corrosive Gases Produced During Polyimide Curing Process	
PYA3-003E	Analysis of Flame Retardant Polymers; Part 1: Analysis of Evolved Gases using Atomic Emmission Detector (AED)	
PYA3-004E	Analysis of Flame Retardant Polymers; Part 2: Analysis of Evolved Gases (EGA) using Mass Spectrometer (MS)	
PYA3-006E	Analysis of Rubber composition with EAG and EGA Polymer MS Library (EGA-MS LIB)	

PYA3-007E	Thermal Degradation Studies of Flame-Retarded PBT by Temperature Programmed Py-GC/MS		
PYA3-008E	Characterization of chitin-based polymer hybrids by EGA and EGA-GC/MS (1)		
PYA3-009E	Characterization of chitin-based polymer hybrids by EGA and EGA-GC/MS (2)		
PYA3-012E	Forensic Discrimination of Fibers by Evolved Gas Analysis and Library Search by F-Search		
PYA3-013E	Differentiating plant fibers using Py-GC/MS		
PYA3-014E	Viability of Evolved Gas Analysis with F-Search and an MS Library for Qualitative Analysis of Rubber Products		
PYA3-015E	Differentiation of styrenic polymer using evolved gas analysis (EGA)-MS		
PYA3-016E	Differentiation of Lavandula angustifololia (Lavender) species using EGA-MS		
PYA3-017E	Differentiation of polyamides using evolved gas analysis (EGA)-MS		
PYA3-018E	Quantitative analysis of red phosphorus flame retardant in polybytelene terephthalate by evolved gas analysis (EGA)-MS		
PYA3-020E	Evaluation of the aged deterioration of PE pipes used for a hot-water heating system (1)		
PYA3-021E	Analysis of yellowing of a polyvinyl chloride sheet. Part 1: Evolved gas analysis-MS		
PYA3-022E	Analysis of yellowing of a polyvinyl chloride sheet. Part 2: Heart-cut EGA-GC/MS		
PYA3-023E	Outdoor exposure tests of 6,6-nylon cable ties - usefulness of evolved gas analysis (EGA)-MS -		
PYA3-024E	Determination of red phosphorus in phenol resin		
PYA3-025E	Analysis of polyvinyl alcohol contaminated by a small amount of polymer using heart-cut (HC) EGA-GC/MS		

PYA3-026E	Outdoor exposure tests of 6,6-nylon cable ties	- Use of thermal desorption (TD)-GC/MS ·
-----------	--	--

PYA3-027E Analysis of oil-based black inks - Comparison of good and defective inks -

Carrier Gas Selector Notes

No.	Article name
PYA4-001E	Applications Using Carrier Gas Selector; Part 1: Pyrolysis of Polystyrene (PS) in Air
PYA4-002E	Applications Using Carrier Gas Selector; Part 2: Evolved Gas Analysis (EGA) of Polystyrene in Air
PYA4-003E	Analaysis Examples Using Carrier Gas Switcher; Part 3: Pyrolysis of Polycarbonate (PC) in Air
PYA4-004E	Analysis Examples Using Carrier Gas Switcher ; Part 4: Pyrolysis of Polystyrene (PE) in Air
PYA4-007E	Effect of hydrogen carrier gas on Py-GC/MS analysis of polymers; Part 1 Hydrogenation of HDPE pyrolyzates
PYA4-008E	Effect of hydrogen carrier gas on Py-GC/MS analysis of polymers; Part 2 Hydrogenation of HDPE pyrolyzates in El source of MS
PYA4-009E	Effect of hydrogen carriers gas on Py-GC/MS analysis of polymers; Part 3 Library search using existing database

UV Irradiation / Pyrolysis Gas Chromatography/Mass Spectroscopy (UV/Py-GC/MS) Notes

No.	Article name
PYA5-001E	Analysis of volatiles released from a UV curable resin using UV/Py-GC/MS technique
PYA5-002E	Study of Photo/Thermal/Oxidative degradation of Polycarbonate Using UV/Py-GC/MS
PYA5-003E	Analysis of the photo/thermal/oxidative degradation products formed when high impact polystyrene (HIPS) is UV irradiated
PYA5-004E	EGA thermogram of degraded high impact polystyrene
PYA5-005E	Papid evaluation of ethylene vinyl acetate degradation using online UV irradiation Py-GC/MS
PYA5-006E	Photo, thermal and oxidative degradation of EPDM rubber using online UV irradiation PY-GC/MS
PYA5-007E	Multi-Sample UV Irradiator - Part 1 Development -
PYA5-008E	Multi-Sample UV Irradiator - Part 2 Comparison of degradation degree by sample cup position -
PYA5-009E	Multi-Sample UV Irradiator - Part 3 Correlation with Micro-UV Irradiator -

Pyrolyzer Hardware & Accessories Technical Notes

No.	Article name
PYT-001E	Features of Double-Shot Pyrolyzer PY-2020D& iD; Part 1: Two Guaranteed Performance Specs
PYT-002E	Features of Double-Shot Pyrolyzer PY-2020D & iD; Part 2: Two Guaranteed Performance Specs
PYT-003E	Features of Double-Shot Pyrolyzer PY-2020D & iD; Part 3: Elution of High Boiling Components and it's Importance
PYT-004E	Three Analytical Techniques of Double-Shot Pyrolyzer PY-2020D & iD; Part 1: Evolved Gas Analysis
PYT-005E	Three Analytical Techniques of Double-Shot Pyrolyzer PY-2020D & iD; Part 2: Instant Pyrolysis (Single-Shot-Technique)
PYT-006E	Three Analytical Techniques of Double-Shot Pyrolyzer PY-2020D & iD; Part 3: Multi-Step Pyrolysis (Double-Shot Technique)
PYT-007E	Correlation Between Evolved Gas Analysis and Thermal Gravimetric Analysis with the Double-Shot Pyrolyzer
PYT-008E	Temperature Stability and Cooling Performance of Double-Shot Pyrolyzer (PY-2020D)
PYT-009E	Temperature Profiles and Pyrolyzer Heating Systems
PYT-010E	Comparison of Free-Fall Sample Introduction versus Sliding Sample Introduction
PYT-012E	Effects of Pyrolysis Temperature of Pyrograms
PYT-013E	Finding Proper Pyrolysis Temperature
PYT-014E	Reproducibility of EGA Curves in Evolved Gas Analysis (EGA)
PYT-015E	Operational Principle of Auto Shot Sampler (AS-1020E)

PYT-016E	Reproducibility of Pyrograms Obtained with Auto Shot Sampler (AS-1020E) and Double-Shot Pyrolyzer
PYT-017E	Polymer Prepper, A Simple Polymer Pulverizing Tool for Py-GC; Part 1: Surface Form and Contamination Removal
PYT-018E	Polymer Prepper, A Simple Polymer Pulverizing Tool for Py-GC ; Part 2: Comaprison with Other Pretreatment Methods
PYT-019E	Operational Principle of MicroJet Cryo Trap (MJT-1030E)
PYT-022E	Operational Principle of Selective Sampler (SS-1010E)
PYT-023E	Points to Consider in Obtaining Pyrograms by Py-GC/MS in Air Circumstance
PYT-024E	Procedures for Acquiring Pyrograms in Air and Its Automation
PYT-025E	Improvement of Temperature Profile at Py-GC Interface by Heat Sink Adaptor and Reduction of Memory Effect for Low and Reactive Volatile Component
PYT-026E	Improvement of Temperature Profile at Py-GC Interface and Yield Enhancement of High Boiling Components by Heat Sink Adaptor
PYT-027E	Effects of Temperature on the pyrolysis of polystyrene (PS) in air
PYT-028E	Splitless-mode sample introduction in Py-GC system
PYT-029E	Suppression of secondary reactions by using "flow-through cup"
PYT-030E	Correlation between Evolved Gas Analysis and Thermogravimetry (TG) - Correlation in apex temperatures between EGA and TG -
PYT-031E	S/N ration comparison of thermograms obtained by Evolved Gas Analysis (EGA-MS) and Thermogravimetry (TG)
PYT-032E	Development of a micro-sample collection tool (Micro Sample Collector: MSC)

Capillary Columns - Ultra Alloy Application Notes

No.	Article name
UAA-001E	Analysis of Free Alkylphenols and Phthalate Esters Using Ultra ALLOYR-5(P) Column
UAA-002E	Analysis of Butter Using Ultra ALLOY-TRG, A Column Designed for Triglycerides Analysis
UAA-003E	Analysis of Polywax 655 Using Ultra ALLOY-SIM Column for Simulated Distillation
UAA-004E	Analysis of Agricultural Chemicals Using Ultra ALLOY-1(S) Column for Trace Amount Analysis
UAA-005E	Effectiveness of Deactivated Quartz Insert in Trace Analysis

Capillary Columns - Ultra Alloy Hardware Notes

No.	Article name
UAT-001E	Comparing Ultra ALLOY Metal Capillary Column with Fused Silica Capillary Columns
UAT-002E	Inner Surface Structure of Ultra ALLOY Metal Capillary Columns (Contamination Durability)
UAT-003E	Thermal Resistance (Bleeding) of Ultra ALLOY Metal Capillary Columns
UAT-004E	Mechanical Strength (Flexural Strength) of Ultra ALLOY and other Metal Capillary Columns
UAT-005E	Contamination Resistance of Ultra ALLOY Metal Capillary Columns
UAT-006E	Development of Ultra ALLOY® metal capillary column for analysis of brominated flame retardants